30 research outputs found

    Oxidation of Nb(110): atomic structure of the NbO layer and its influence on further oxidation.

    Get PDF
    NbO terminated Nb(110) and its oxidation are examined by scanning tunneling microscopy and spectroscopy (STS). The oxide structures are strongly influenced by the structural and electronic properties of the underlying NbO substrate. The NbO is terminated by one-dimensional few-nanometer nanocrystals, which form an ordered pattern. High-resolution STS measurements reveal that the nanocrystals and the regions between the nanocrystals exhibit different electronic characters. Low-dosage oxidation, sufficient for sub-monolayer coverage of the NbO, with subsequent UHV annealing results in the formation of resolved sub-nanometer clusters, positioned in-between the nanocrystals. Higher dosage oxidation results in the formation of a closed Nb2O5-y layer, which is confirmed by X-ray photoelectron spectroscopy measurements. The pentoxide is amorphous at the atomic-scale. However, large scale (tens of nanometers) structures are observed with their symmetry matching that of the underlying nanocrystals

    Reactive co-sputter deposition of nanostructured cermet anodes for solid oxide fuel cells

    Get PDF
    The impact of a nanostructured NiO/yttria-stabilized zirconia (NiO/YSZ) and NiO/gadolinia-doped ceria (NiO/GDC) anode functional layers on low- and intermediate-temperature solid oxide fuel cell (SOFC) performance is investigated. NiO/YSZ and NiO/GDC thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni, Zr–Y, and Ce–Gd targets onto commercial NiO/YSZ substrates. Anode-supported SOFCs based on magnetron sputtered YSZ and GDC electrolytes (~4 µm) with and without the nanostructured anode layers are fabricated. A direct comparison of the YSZ- and GDC-based SOFCs in temperature range of 600–800 and 400–600 °C is made. The performance of cells with the nanostructured anode layers significantly increases as compared to that of the cell without it, especially at lower temperatures. Increase of cells performance was achieved by reduction of the total area-specific resistance by 26–30%

    Magnetron sputtered LSC thin films for solid oxide fuel cell application

    Get PDF
    In this study, La0.6Sr0.4CoO3-d (LSC) thin films were deposited by pulsed DC magnetron sputtering at oblique angle of the LSC target. The effect of post-annealing temperature in the range of 600-1000°C on the film crystalline structure was investigated. The phase composition, crystalline structure and surface morphology of the films were determined using X-ray diffraction, scanning electron microscopy and atomic force microscopy, respectively. Anode-supported solid oxide fuel cells (SOFCs) with bi-layered thin-film yttria-stabilized zirconia (YSZ) / gadolinium-doped ceria (GDC) electrolyte and an LSC thin film interlayer were fabricated. Polarization curves were measured in the temperature range from 700 to 800°C. It was shown that the LSC interlayer improves SOFC power density. Our results demonstrate that magnetron sputtering provides a low-temperature synthesis route for realizing thin LSC films for intermediate-temperature SOFCs

    A mantle origin for sulfates in the unusual "salty" Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates

    No full text
    The Udachnaya-East pipe in Yakutia in Siberia hosts a unique dry (serpentine-free) body of hypabyssal kimberlite (<0.64wt% H2O), associated with a less dry type of kimberlite and a serpentinized kimberlitic breccia. The dry kimberlite is anomalously rich in salts (Na2O and Cl both up to 6wt%) whereas the slightly less dry and the breccia kimberlite are salt free. Yet the Udachnaya kimberlite is a group-I kimberlite, as is the archetypical kimberlite from Kimberley, South Africa. Samples were studied from the three different types of kimberlite (dry-salty, n=8, non-salty, n=5 and breccia, n=3) regarding their mineralogy, geochemistry, and more specifically their sulfur content. Our results show the salty kimberlite is unprecedentedly rich in sulfur (0.13-0.57wt%) compared to the non-salty kimberlite (0.04-0.12wt%) and the breccia (0.29-0.33wt%). In the salty kimberlite, most of the sulfur is present as sulfates (up to 97% of Stotal) and is disseminated throughout the groundmass in close association with Na-K-bearing carbonates. Sulfates occur within the crystal structure of these Na-K-bearing carbonates as the replacement of (CO3) by (SO3) groups, or as Na- and K-rich sulfates (e.g. aphtitalite, (K,Na)3Na(SO4)2). The associated sulfides are djerfisherite; also Na- and K-rich species. The close association of sulfates and carbonates in these S-rich alkaline rocks suggests that the sulfates crystallized from a mantle-derived magma, a case that has strong implication for the oxygen fugacity of kimberlite magmatism and more generally for the global S budget of the mantle

    The age and origin of cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton

    No full text
    International audienceCratonic lithospheric mantle is believed to have been formed in the Archean, but kimberlite-hosted coarse peridotites from Udachnaya in the central Siberian craton typically yield Paleoproterozoic Re-depletion Os isotope ages (TRD). By comparison, olivine megacrysts from Udachnaya, sometimes called “megacrystalline peridotites”, often yield Archean TRD ages, but the nature of these rare materials remains enigmatic. We provide whole-rock (WR) Re-Os isotope and PGE analyses for 24 olivine-rich xenoliths from Udachnaya as well as modal and petrographic data, WR and mineral major and trace element compositions. The samples were selected based on (a) high olivine abundances in hand specimens and (b) sufficient freshness and size to yield representative WR powders. They comprise medium- to coarse-grained (olivine  1 cm) dunite, olivine megacrysts and low-orthopyroxene (11–21% opx) harzburgites equilibrated at 783–1154 °C and 3.9–6.5 GPa; coarse dunites have not been previously reported from Udachnaya; two xenoliths contain ilmenite. The harzburgites and dunites have similar WR variation ranges of Ca, Al, Fe, Cr and Mg# (0.917–0.934) typical of refractory cratonic peridotites, but the dunites tend to have higher MgO, NiO and Mg/Si. Mineral abundances and those of Ca and Al are not correlated with Mg#WR; they are not due to differences in melting degrees but are linked to metasomatism. Several samples with high 187Re/188Os show a positive linear correlation with 187Os/188Os with an apparent age of 0.37 Ga, same as eruption age of host kimberlite. Robust TRD ages were obtained for 16 xenoliths with low 187Re/188Os (0.02–0.13). TRD ages for low-opx harzburgites (1.9–2.1 Ga; average 2.0 ± 0.1 Ga, 1 σ) are manifestly lower than for dunites and megacrysts (2.4–3.1 Ga); the latter define two subsets with average TRD of 2.6 ± 0.1 Ga and 3.0 ± 0.1 Ga, and TMA of 3.0 ± 0.2 Ga and 3.3 ± 0.1 Ga, respectively. Differences in olivine grain size (coarse vs. megacrystalline) are not related to age. The age relations suggest that the dunites and megacrysts could not be produced by re-melting of harzburgites, e.g. in arc settings, nor be melt channel materials in harzburgites. Instead, they are relict fragments of lithospheric mantle formed in the Archean (likely in two events at or after 2.6 Ga and 3.0 Ga) that were incorporated into cratonic lithosphere during the final assembly of the Siberian craton in the Paleoproterozoic. A multi-stage formation of the Siberian lithospheric mantle is consistent with crustal basement ages from U-Pb dating of zircons from crustal xenoliths at Udachnaya and detrital zircons from the northern Siberian craton (1.8–2.0, 2.4–2.8 and 3.0–3.4 Ga). The new data from the Siberian and other cratons suggest that the formation of strongly melt-depleted cratonic lithosphere (e.g. Mg# ≥0.92) did not stop at the Archean-Proterozoic boundary as is commonly thought, but continued in the Paleoproterozoic. The same may be valid for the transition from the ‘Archean’ (4–2.5 Ga) to modern tectonic regimes

    Kyanite-bearing eclogite xenoliths from the Udachnaya kimberlite, Siberian craton, Russia

    No full text
    Xenoliths brought up by kimberlite magmas are rare samples of otherwise inaccessible lithospheric mantle. Eclogite xenoliths are found in most cratons and commonly show a range of mineral and chemical compositions that can be used to better understand craton formation. This study focuses on five new kyanite-bearing eclogites from the Udachnaya kimberlite pipe (367±5 Ma). They are fine-to coarse-grained and consist mainly of “cloudy” clinopyroxene (cpx) and garnet (grt). The clinopyroxene is Al,Na-rich omphacite while the garnet is Ca-rich, by contrast to typical bi-mineral (cpx+grt) eclogites that contain Fe- and Mg-rich garnets. The Udachnaya kyanite eclogites are similar in modal and major element composition to those from other cratons (Dharwar, Kaapvaal, Slave, West African). The kyanite eclogites have lower REE concentrations than bi-mineral eclogites and typically contain omphacites with positive Eu and Sr anomalies, i.e. a “ghost plagioclase signature”. Because such a signature can only be preserved in nonmetasomatised samples, we infer that they were present in the protoliths of the eclogites. It follows that subducted oceanic crust is present at the base of the Siberian craton. Similar compositions and textures are also seen in kyanite eclogites from other cratons, which we view as evidence for an Archean, subduction-like formation mechanism related to craton accretion. Thus, contrary to previous work that classifies all kyanite eclogites as type I (IK), metasomatized by carbonatite/kimberlitic fluids, we argue that some of them, both from this work and those from other cratons, belong to the non-metasomatized type II (IIB). The pristine type IIB is the nearest in composition to protoliths of mantle eclogites because it contains no metasomatic enrichments

    Heat Transfer and Production in Cratonic Continental Crust: U‐Pb Thermochronology of Xenoliths From the Siberian Craton

    No full text
    International audienceCoupled U-Pb and trace-element analyses of accessory phases in crustal xenoliths from the Late Devonian Udachnaya kimberlite (Siberian craton, Russia) are used to constrain Moho temperature and crustal heat production at the time of kimberlite eruption. Rutile and apatite in lower-crustal garnet granulites record U-Pb dates that extend from 1.8 Ga to 360 Ma (timing of kimberlite eruption). This contrasts with upper-crustal tonalites and amphibolites that contain solely Paleoproterozoic apatite. Depth profiling of rutile from the lower-crustal xenoliths show that U-Pb dates increase gradually from rim to core over μm-scale distances, with slower-diffusing elements (e.g., Al) increasing in concentration across similar length-scales. The U-Pb and trace element gradients in rutile are incompatible with partial Pb loss during slow cooling, but are consistent with neocrystallization and re-heating of the lower crust for <1 Myr prior to eruption. Because Paleoproterozoic rutile and apatite dates are preserved, we infer that long-term ambient lower-crustal temperatures before this thermal perturbation were cooler than the Pb closure temperature of rutile and probably apatite (<400°C). The lower-crustal temperature bounds from these data are consistent with pressure-temperature arrays of Udachnaya peridotite xenoliths that suggest relatively cool geothermal gradients, signifying that the mantle xenoliths accurately capture the thermal state of the lithosphere prior to eruption. Combined, the xenolith data imply low crustal heat production for the Siberian craton (∼0.3 μW/m 3). Nevertheless, such values produce surface heat flow values of 20–40 mW/m 2, higher than measured around Udachnaya (average 19 mW/m 2), suggesting that the surface heat flow measurements are inaccurate
    corecore